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1 Introduction

In this short paper we outline a unifying framework for convex multilinear estimation, based on our
recent work [15], and sketch a kernel extension to tensor-based modeling in line with [14].

Traditional tensor-based approaches often translate intochallenging non-convex optimization prob-
lems that suffer from local minima. As a first contribution weconsider in the next Section a general
class of non-smooth convex optimization problems where a nuclear norm for tensors [9] is employed
as a penalty function to enforce parsimonious solutions. For supervised learning the proposed frame-
work allows to extend the penalized empirical risk minimization used in machine learning to develop
structured (tensor-based) models. On the other hand problems like tensor completion and tensor de-
noising — that can be seen as unsupervised tasks — also arise as special instances of the general
class of optimization problems that we consider. A common algorithm is developed to deal with
these different cases. The approach builds upon existing methods for convex separable problems
[10] and distributed convex optimization [5]. Furthermorebeing essentially a first-order scheme in
the tensor unknown, the strategy we pursue can be accelerated to achieve the optimal rate of con-
vergence in the sense of Nesterov [11]. From a methodological perspective extending the nuclear
norm — and, more generally, the class of Shatten norms — from matrices to tensors [15] poses
new interesting questions. For second order tensors a knownresult shows that the nuclear norm is
the convex envelope of the rank function. For the generalN−th order case answering whether the
convex relaxation obtained with the new penalty is tight with respect to related rank-constrained
formulations is an important question that goes beyond meremathematical interest. In fact, a bet-
ter understanding of these aspects might lead to more accurate convex heuristics for non-convex
tensor-based problems.

Beyond non-convexity an important drawback of traditionaltensor-based techniques consists of the
linearity of models with respect to the data, a fact that often translates into limited discriminative
power. By contrast, in the last two decades kernel models proved to be very accurate thanks to their
flexibility. In Section 3 we sketch a possible approach to extend the classical tensor-based framework
[14] and highlight the difference with seemingly similar ideas [17]. Whereas application of kernel
methods would normally prescribe to flatten the various dimensions first, our proposal consists of
mapping tensors based upon the SVD decomposition (and higher order versions thereof [6]) so that
the structural information embodied in the original representation is retained.
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In the following we denote scalars by lower-case letters (a, b, c, . . .), vectors as capitals (A,B,C, . . .)
and matrices as bold-face capitals (A,B,C, . . .). Tensors are written as calligraphic letters
(A,B, C, . . .). We write ai to mean thei−th entry of a vectorA. We frequently usei, j in the
meaning of indices and with some abuse of notation we will useI, J to denote the index upper
bounds. We further denote sets (and spaces) by Gothic letters (A,B,C, . . .). Finally we often write
NI to denote the set{1, . . . , I}.

2 Multilinear Estimation with Nuclear Norm Penalties

Recent research in statistics and machine learning [18] focused on composite norms. Regularization
via composite norms allows one to convey specific structurala-priori information about the model
to be estimated. LetX ∈ R

I1 ⊗ R
I2 ⊗ · · · ⊗ R

IN denote a generic tensor. Consider the function:

g(X ) :=
1

N

∑

n∈NN

‖X<n>‖∗

where·<n> denotes then−th unfolding operator and‖ · ‖∗ is the nuclear norm for matrices. It
can be shown thatg is a well defined norm — that by extension can be callednuclear — and
hence we write‖X‖∗ := g(X ). Furthermore such a norm represents an instance of a more general
class that extends the concept of Shatten norms from matrices to higher order tensors [15]. Let
A : R

I1 ⊗ R
I2 ⊗ · · · ⊗ R

IN → R
D1 ⊗ R

D2 ⊗ · · · ⊗ R
DM be some linear map and assumeZ ∈

R
D1 ⊗ R

D2 ⊗ · · · ⊗ R
DM . In here we deal with the equality constrained optimizationproblem:

X̂ := arg min
X∈RI1⊗RI2⊗···⊗RIN

f(X ) + µ‖X‖∗ (1)

subject to A(X ) = Z (2)

aimed at finding a compact1 N−order tensor-model̂X based upon an application-dependent convex
and smooth functionf and a finite trade-off parameterµ > 0. Algorithmically a solution of the
unconstrained problem corresponding to (1) can be found by generating a sequence of convex and
separable proximal problems [15] each of which can be solvedvia the Alternating Direction Method
of Multipliers [5]. On the other hand a simple approach to deal with the linear constraint (2) is by
means of a penalty method [2]. Interestingly the approach wepropose is essentially a first order
scheme in the tensor unknown. Hence its convergence speed can be improved relying on the concept
of estimating sequences that underlies many recent proposals forl1 and nuclear norm optimization
[3],[16]. More details on the proposed strategy can be foundin [15]. Here we only remark that the
formulation in (1)-(2) can be used to tackle a broad class of tasks: different specifications off give
rise to different estimation problems both supervised and unsupervised. Examples follow.

2.1 Penalized Empirical Risk Minimization

Suppose we are givenK input-output pairs
{(

yk,Z
(k)

)

∈ Y × R
I1 ⊗ R

I2 ⊗ · · · ⊗ R
IN

}

k∈NK

whereY denotes the output set. Given a convexloss function l : Y × R → R
+ the unconstrained

optimization problem associated to (1) can be used for supervised learning as soon as we take

f(X ) =
∑

i∈NK

l
(

yk,
〈

Z(k),X
〉)

. (3)

This corresponds to extending thepenalized empirical risk minimization approach used in machine
learning to the case where the generic input pattern is represented as a tensorZ and the prediction
is performed via the linear function〈Z,X〉. This is useful in a number of applications such as, for
instance, classification of human action from surveillancevideos or quality assessment of batches in
chemometrics.

2.2 Tensor Denoising and Completion

Suppose we want to recover a low-rank tensorX ∈ R
I1 ⊗ R

I2 ⊗ · · · ⊗ R
IN such thatA(X ) is

close or even coincide to an observedZ ∈ R
D1 ⊗ R

D2 ⊗ · · · ⊗ R
DM . In the simplest situation

1Herecompact means with small multilinear ranks, see [15].
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Z ∈ R
I1 ⊗R

I2 ⊗ · · · ⊗ R
IN is a given noisy tensor observation and we are interested in recovering

its latent versionX̂ , assumed to be compact. In this case we let

f(X ) = ‖X − Z‖2
⋆

where‖ · ‖⋆ denotes some smooth norm, such as the Frobenius norm. The constraint in (2) can be
used to further impose strong prior information overX or a transformation thereofA(X ). A popular
case (well-studied for second-order tensors) is found for the case where(A(X ))j = x

i
j
1
i
j
2
···ij

N

and

Z ∈ R
J is a vector of measurements corresponding to a subset of entries with indices in

O =
{

(ij1, . . . , i
j
N ) ∈ NI1 × · · · × NIN

: j ∈ NJ

}

.

In the limit case of tensor completion [9] we takef = 0. More details as well as concrete examples
can be found in [15].

3 Beyond Linearity: Operatorial Representations

The core idea of kernel methods [13] consists of mapping input points represented as vectors (first
order tensors){Z(k)}k∈NK

⊂ R
p into a feature space ofl2 sequences (well behaved infinite2 dimen-

sional vectors) by means of afeature map φ : R
p → l2. Standard algorithms can then be applied

to find a linear model of the type〈X,φZ〉l2 [1]. Computation in finite time is ensured thanks to
finite dimensional representations [17]. Moreover, since the feature map is normally chosen to be
nonlinear, a linear model〈X,φZ〉l2 in the feature space corresponds to a nonlinear function ofZ in
the original input spaceRp.

For tensors, our proposal to go beyond linearity corresponds to representing a tensorZ as a in-
finite dimensional operatorΦZ in the same spirit of the traditional kernel formalism whereZ is
represented byφZ . This requires the definition of an appropriate mapping approach as well as the
existence of finite dimensional representations forX — which is now infinite dimensional — in
the linear model〈X ,ΦZ〉. In the following we begin by characterizing the feature space of infinite
dimensionalN−th order tensors to whichΦZ andX belong. Successively, we present a possible
operatorial representation. We conclude with remarks concerning finite representations and convex-
ity.

3.1 Tensor Product of Hilbert Spaces

Assume Hilbert spaces (HSs)(H1, 〈·, ·〉H1
), (H2, 〈·, ·〉H2

), . . . , (HN , 〈·, ·〉HN
). A space of infinite

dimensionalN−th order tensors can be constructed as follows. We recall that ψ : H1 × H2 × · · · ×
HN → R is a bounded (equivalently continuous) multilinear functional [8], if it is linear in each
argument and there existsc ∈ [0,∞) such that|ψ(h1, h2, . . . , hN )| ≤ c‖h1‖H1

‖h2‖H2
· · · ‖h2‖HN

for all hi ∈ Hi, i ∈ NN . It is said to beHilbert-Schmidt if it further satisfies
∑

e1∈E1

∑

e2∈E2

· · ·
∑

eN∈EN

|ψ(e1, e2, . . . , eN )|2 <∞

for one (equivalently each) orthonormal basisEi of Hi, i ∈ NN . It can be shown that the collections
of such well behaved Hilbert-Schmidt functionals endowed with the inner product

〈ψ, ξ〉HSF :=
∑

e1∈E1

∑

e2∈E2

· · ·
∑

eN∈EN

ψ(e1, e2, . . . , eN )ξ(e1, e2, . . . , eN)

forms a HS. In particular, any bilinear functional associated to aN−tuple(h1, h2, . . . , hN) ∈ H1 ×
H2 × · · · × HN and defined by

ψh1,h2,...,hN
(f1, f2, . . . , fN) := 〈h1, f1〉H1

〈h2, f2〉H2
· · · 〈hN , fN 〉HN

(4)

belongs to such a space and we have that

〈ψh1,h2,...,hN
, ψg1,g2,...,gN

〉HSF = 〈h1, g1〉H1
〈h2, g2〉H2

· · · 〈hN , gN 〉HN
. (5)

2We are considering here the most general case associated, for instance, to the popular RBF Gaussian kernel.
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Figure 1: A diagram illustrating the oper-
atorial representation for the second order
case. The operatorΦZ ∈ H1 ⊗ H2 is the
feature representation of the input pattern
Z ∈ R

I1 ⊗ R
I2 . With Γ∗

V we denoted the
adjoint ofΓV .

Starting from (4) we now let

h1 ⊗ h2 · · · ⊗ hN := ψh1,h2,...,hN
(6)

and define the tensor product spaceH1 ⊗H2 ⊗ · · · ⊗ HN as the completion of the linear span

span {h1 ⊗ h2 ⊗ · · · ⊗ hN : hi ∈ Hi, i ∈ NN} .

A finite-rank elementX of this space admit a representation in terms of a finite number J of rank-1
terms (6):

X =
∑

j∈NJ

h
j
i1
⊗ h

j
i2
· · · ⊗ h

j
iN

(7)

and can be envisioned as the infinite dimensional analogue ofthe traditional finite-rank tensors of
previous section. If nowY =

∑

j∈NR
gr

i1
⊗ gr

i2
· · · ⊗ gr

iN
, it follows from (5) that the inner product

betweenX andY, denoted by〈X ,Y〉H1⊗H2⊗···⊗HN
, is given by

〈X ,Y〉H1⊗H2⊗···⊗HN
=

∑

j∈NJ

∑

r∈NR

〈hj
i1
, gr

i1
〉H1

〈hj
i2
, gr

i2
〉H2

· · · 〈hj
iN
, gr

iN
〉HN

.

We further have that‖X‖H1⊗H2⊗···⊗HN
=

√

〈X ,X〉H1⊗H2⊗···⊗HN
.

Finally we stress that the present notion of tensor product should not be confounded with the one
introduced in the context ofsplines [17],[4] and giving rise to functional ANOVA models [7]. In the
latter case a tensor product formalism is used as a way of defining multivariate functions starting
from univariate ones. Object in their tensor product space are then functions of the typef : R

d →
R rather than operators, as in the present setting. A deeper look at the relation between the two
constructions can be found in [12, Chapter 1.5].

3.2 Operatorial Representations

(a) A 19×18 grayscale im-
ageZ of a character taken
from a natural scene.

(b) Its190× 171 feature representationΦZ .

Figure 2: An imageZ (a) and its finite dimensional operatorial representationΦZ (b) [14]. Here we
used2−degree polynomial feature maps to generate the mode operators in (9).

Given the operatorial feature space sketched above it remains to define an appropriate feature repre-
sentationΦZ associated to a generic patternZ ∈ R

I1 ⊗ R
I2 ⊗ · · · ⊗ R

IN . Here we follow [14] and
restrict ourselves to the case of second order tensors. Hence we assume that we have input patterns
represented as matrices{Z(k)}k∈NK

⊂ R
I1 ⊗R

I2 . The general case can be treated based upon the
higher order analogues of the SVD [6]. Recall that the thin SVD decomposition ofZ ∈ R

I1 ⊗ R
I2

can be written as
Z =

∑

i∈Nr

σiUi ⊗ Vi (8)
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whereσ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σmin {I1,I2} = 0 are the ordered singular values and
Ui ⊗ Vi are rank-1 matrices that represent the finite dimensional second-order analogue of (6). Let
φ1 : R

I1 → H1 andφ2 : R
I2 → H2 be some feature maps in the standard sense of kernel methods.

Based upon{Ui}i∈Nr
and{Vi}i∈Nr

we introduce themode-0 operatorΓU : H1 → R
I1 and the

mode-1 operatorΓV : H2 → R
I2 defined, respectively, by

ΓUh =
∑

i∈Nr

〈φ1(Ui), h〉H1
Ui and ΓV h =

∑

i∈Nr

〈φ2(Ui), h〉H1
Vi . (9)

Let ΓU ⊗ΓV denotes the infinite dimensional analogue of the Kronecker product between matrices.
We define the operatorial representation ofZ, denoted asΦZ , by

ΦZ := arg min
{

‖ΨZ‖2
H1⊗H2

: (ΓU ⊗ ΓV )ΨZ = Z, ΨZ ∈ H1 ⊗H2

}

. (10)

This wayZ is associated to the unique minimum norm solution of an operatorial equation. Details
can be found in [14]. A diagram illustrating this idea is reported on Figure 1. On Figure 2 we show
the (finite dimensional) feature representation obtained for the case whereφ1 andφ2 are polynomial
feature maps.

3.3 Conclusions: Finite Dimensional Kernel Representations and Practical Estimation

The generalized tensor-based framework that arise from thefeature representation in (10) aims at
combining the flexibility of kernel methods with the capability of exploiting structural information
typical of tensor-based data analysis. The idea can be implemented into practical problem formu-
lations [14] thanks to finite dimensional representations of the operatorial models. This is achieved
via extensions of the classical Representer Theorem [17]. Unfortunately the current parametrization
leads to non-convex optimization problems. Obtaining convex multilinear formulations within this
framework is the subject of ongoing research.
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